Legal Frameworks for AI-Driven Cybercrime Prevention


Abstract views: 16 / PDF downloads: 10

Authors

  • Naeem AllahRakha Tashkent State University of Law

DOI:

https://doi.org/10.59022/ujldp.253

Keywords:

AI-Driven Evidence, Cybercrime Prevention, Privacy Rights, Legal Frameworks, Black Box Problem, Risk Assessments, Cross-Border Enforcement, Data Security

Abstract

This research aims to explore the legal frameworks necessary for integrating AI-driven evidence in cybercrime prevention while ensuring the protection of privacy rights. The study examines AI's role in evidence collection, particularly focusing on the challenges of AI surveillance capabilities and the privacy concerns surrounding data gathering. Using qualitative, doctrinal, and document analysis methods, the research analyzes how different jurisdictions address the admissibility of AI evidence in criminal proceedings. The findings highlight the challenges posed by AI's opacity, the black box problem, and the reliability of AI-generated evidence. The recommendations include conducting risk assessments, limiting data collection, ensuring informed consent, and enhancing security practices. The research suggests developing international protocols for cross-border enforcement systems to address the evolving nature of cybercrime. In conclusion, this study provides insights into adapting legal standards for AI-driven cybercrime prevention while safeguarding individual privacy rights.

References

Alhitmi, H. K., Mardiah, A., Al-Sulaiti, K. I., & Abbas, J. (2024). Data security and privacy concerns of AI-driven marketing in the context of economics and business field: An exploration into possible solutions. Cogent Business & Management, 11(1), 2393743. https://doi.org/10.1080/23311975.2024.2393743

Ali, S., Abuhmed, T., El-Sappagh, S., Muhammad, K., Alonso-Moral, J. M., Confalonieri, R., Guidotti, R., Del Ser, J., Díaz-Rodríguez, N., & Herrera, F. (2023). Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Information Fusion, 99, 101805. https://doi.org/10.1016/j.inffus.2023.101805

Ashraf, Z. A., & Mustafa, N. (2025). AI and cyber laws. In Intersection of human rights and AI in healthcare (pp. 353-376). IGI Global Scientific Publishing.

Ashraf, Z. A., & Mustafa, N. (2025). Intersection of human rights and AI in healthcare. In Title of the Book (Chapter 15). Publisher. https://doi.org/10.4018/979-8-3693-7051-3.ch015

Atadjanov, S. U. (2024). Concept of personal data, legal nature of their protection. Journal of Social Research in Uzbekistan, 4(02), 1–11. https://doi.org/10.37547/supsci-jsru-04-02-01

Clooney, A., & Webb, P. (2021). Introduction. The right to a fair trial in international law (Online ed.). Oxford Academic. https://doi.org/10.1093/law/9780198808398.003.0001

DePaula, N. G., Ngao, L., Mellouli, S., Luna-Reyes, L., & Harrison, T. (2024). Regulating the machine: An exploratory study of US state legislations addressing Artificial Intelligence, 2019–2023. Proceedings of the 25th Annual International Conference on Digital Government Research, 815–826. https://doi.org/10.1145/3657054.3657148

Dhabu, A. C. (2024). Legal implications of artificial intelligence in cross-border transactions: Navigating international trade law. [Master's thesis, Lund University]. Lund University Publications. https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9154823&fileOId=9154824

Eswaran, S., Ling, H. C., Lim, K. H., & Chellamuthu, N. (2024). Guest editorial: AI for cybercrime detection & prevention: Opportunities, challenges, and solutions. Journal of Applied Security Research, 19(4), 539–541. https://doi.org/10.1080/19361610.2024.2413970

Faqir, S. A. (2024). The exclusionary rule of AI-enhanced digital evidence in the United States and UAE: A comparative analysis. Journal of Southwest Jiaotong University, 59(1). https://doi.org/10.35741/issn.0258-2724.59.1.7

Ferm, L.-E. C., Quach, S., & Thaichon, P. (2022). Data privacy and artificial intelligence (AI): How AI collects data and its impact on data privacy. In Artificial intelligence for marketing management (1st ed.). Routledge.

Fontes, C., Hohma, E., Corrigan, C. C., & Lütge, C. (2022). AI-powered public surveillance systems: Why we (might) need them and how we want them. Technology in Society, 71, 102137. https://doi.org/10.1016/j.techsoc.2022.102137

Gaffar, H. (2024). Implications of digitalization and AI in the justice system: A glance at the socio-legal angle. Law and World, 10(31), 154–177. https://doi.org/10.36475/10.3.14

Garcia-Segura, L. A. (2024). The role of artificial intelligence in preventing corporate crime. Journal of Economic Criminology, 5, 100091. https://doi.org/10.1016/j.jeconc.2024.100091

Gless, S., Lederer, F. I., & Weigend, T. (2024). AI-based evidence in criminal trials? William & Mary Law School Scholarship Repository. https://scholarship.law.wm.edu/cgi/viewcontent.cgi?article=3206&context=facpubs

Gurkok, C. (2017). Cyber forensics and incident response. In Computer and information security handbook (3rd ed., pp. 603-628). Elsevier. https://doi.org/10.1016/B978-0-12-803843-7.00041-7

Hoofnagle, C. J., van der Sloot, B., & Zuiderveen Borgesius, F. (2019). The European Union general data protection regulation: What it is and what it means. Information & Communications Technology Law, 28(1), 65-98. https://doi.org/10.1080/13600834.2019.1573501

Jada, I., & Mayayise, T. O. (2024). The impact of artificial intelligence on organisational cyber security: An outcome of a systematic literature review. Data and Information Management, 8(2), 100063. https://doi.org/10.1016/j.dim.2023.100063

Jatna, R. N., Manthovani, R., & Hasbullah, H. (2024). The role of disruptive artificial intelligence technology in combating crime in Indonesia. Beijing Law Review, 15(3), 97-114. https://doi.org/10.4236/blr.2024.153097

Khalid, N., Qayyum, A., Bilal, M., Al-Fuqaha, A., & Qadir, J. (2023). Privacy-preserving artificial intelligence in healthcare: Techniques and applications. Computers in Biology and Medicine, 158, 106848. https://doi.org/10.1016/j.compbiomed.2023.106848

Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language processing: State of the art, current trends and challenges. Multimedia Tools and Applications, 82, 3713–3744. https://doi.org/10.1007/s11042-022-13428-4

King, T. C., Aggarwal, N., Taddeo, M., & Floridi, L. (2020). Artificial intelligence crime: An interdisciplinary analysis of foreseeable threats and solutions. Science and Engineering Ethics, 26(1), 89–120. https://doi.org/10.1007/s11948-018-00081-0

Koniaris, M., Galanis, D., Giannini, E., & Tsanakas, P. (2023). Evaluation of automatic legal text summarization techniques for Greek case law. Information, 14(4), 250. https://doi.org/10.3390/info14040250

Lami, B., Mohd. Hussein, S., Rajamanickam, R., & Emmanuel, G. K. (2024). The role of artificial intelligence (AI) in shaping data privacy. International Journal of Law and Management, ahead-of-print, ahead-of-print. https://doi.org/10.1108/IJLMA-07-2024-0242

Laptev, V.A., & Feyzrakhmanova, D.R. (2024). Application of artificial intelligence in justice: Current trends and future prospects. Human-Centered Intelligent Systems, 4(1), 394–405. https://doi.org/10.1007/s44230-024-00074-2

Mandalapu, V., Elluri, L., Vyas, P., & Roy, N. (2023). Crime prediction using machine learning and deep learning: A systematic review and future directions. IEEE Access, 11, 60153–60170. https://doi.org/10.1109/ACCESS.2023.3286344

Mbah, G. O., & Evelyn, A. N. (2024). AI-powered cybersecurity: Strategic approaches to mitigate risk and safeguard data privacy. World Journal of Advanced Research and Reviews, 24(03), 310–327. https://doi.org/10.30574/wjarr.2024.24.3.3695

McBride, B. (2004). The resource description framework (RDF) and its vocabulary description language RDFS. In S. Staab & R. Studer (Eds.), Handbook on ontologies (pp. 51–66). Springer. https://doi.org/10.1007/978-3-540-24750-0_3

Mohamed, N. (2023). Current trends in AI and ML for cybersecurity: A state-of-the-art survey. Cogent Engineering, 10(2), Article 2272358. https://doi.org/10.1080/23311916.2023.2272358

Novelli, C., Casolari, F., Hacker, P., Spedicato, G., & Floridi, L. (2024). Generative AI in EU law: Liability, privacy, intellectual property, and cybersecurity. Computer Law & Security Review, 55, 106066. https://doi.org/10.1016/j.clsr.2024.106066

Ofori, A. Y., & Akoto, D. (2020). Digital forensics investigation jurisprudence: Issues of admissibility of digital evidence. Forensic Leg Investig Sci, 6, 045. https://doi.org/10.24966/FLIS-733X/100045

Podoletz, L. (2023). We have to talk about emotional AI and crime. AI & Society, 38, 1067–1082. https://doi.org/10.1007/s00146-022-01435-w

Rashid, A. B., & Kausik, M. A. K. (2024). AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications. Hybrid Advances, 7, 100277. https://doi.org/10.1016/j.hybadv.2024.100277

Rasyid, M. F. F., SJ, M. A., Mamu, K. Z., Paminto, S. R., Hidaya, W. A., & Hamadi, A. (2024). Cybercrime threats and responsibilities: The utilization of artificial intelligence in online crime. Jurnal Ilmiah Mizani: Wacana Hukum, Ekonomi Dan Keagamaan, 11(1), 49–63.

Rasyid, M. F. F., SJ, M. A., Mamu, K. Z., Paminto, S. R., Hidaya, W. A., & Hamadi, A. (2024). Cybercrime threats and responsibilities: The utilization of artificial intelligence in online crime. Jurnal Ilmiah Mizani, 11(1). https://doi.org/10.29300/mzn.v11i1.3318

Reiling, A. D. (Dory). (2020). Courts and artificial intelligence. International Journal for Court Administration, 11(2), 8. https://doi.org/10.36745/ijca.343

Roberts, H., Cowls, J., Morley, J., Taddeo, M., Wang, V., & Floridi, L. (2021). The Chinese approach to artificial intelligence: An analysis of policy, ethics, and regulation. AI & Society, 36(1), 59–77. https://doi.org/10.1007/s00146-020-00992-2

Rodrigues, R. (2020). Legal and human rights issues of AI: Gaps, challenges and vulnerabilities. Journal of Responsible Technology, 4, 100005. https://doi.org/10.1016/j.jrt.2020.100005

Roshanaei, M., Khan, M. R., & Sylvester, N. N. (2024). Enhancing cybersecurity through AI and ML: Strategies, challenges, and future directions. Journal of Information Security, 15(3), 19-34. https://doi.org/10.4236/jis.2024.153019

Ruschemeier, H. (2023). AI as a challenge for legal regulation: The scope of application of the artificial intelligence act proposal. ERA Forum, 23(3), 361–376. https://doi.org/10.1007/s12027-022-00725-6

Sai Meghana, G. V., Afroz, S. S., Gurindapalli, R., Katari, S., & Swetha, K. (2024). A survey paper on understanding the rise of AI-driven cyber crime and strategies for proactive digital defenders. 2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN), 25–30. https://doi.org/10.1109/ICPCSN62568.2024.00012

Saini, I. S., & Kaur, N. (2023). The power of predictive analytics: Forecasting crime trends in high-risk areas for crime prevention using machine learning. 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–10. https://doi.org/10.1109/ICCCNT56998.2023.10306731

Shamiulla, A. M. (2019). Role of artificial intelligence in cyber security. International Journal of Innovative Technology and Exploring Engineering, 9(1), 4628–4630. https://doi.org/10.35940/ijitee.a6115.119119

Shetty, S., Choi, K., & Park, I. (2024). Investigating the intersection of AI and cybercrime: Risks, trends, and countermeasures. International Journal of Cybersecurity Intelligence & Cybercrime, 7(2), [pages pending]. https://doi.org/10.52306/2578-3289.1187

Smith, M., & Miller, S. (2022). The ethical application of biometric facial recognition technology. AI & Society, 37(1), 167–175. https://doi.org/10.1007/s00146-021-01199-9

Trajkovska, E., Del Becaro, T., & Mijalkov, B. (2024). Prevention of cybercrime in the age of artificial intelligence (AI) within the European Union. Proceedings of the International Scientific Conference "Social Changes in the Global World", 11(11), 177–189. https://doi.org/10.46763/SCGW241178t

Vardalachakis, M., Kondylakis, H., Tampouratzis, M., Papadakis, N., & Mastorakis, N. (2023). Anonymization, hashing and data encryption techniques: A comparative case study. 2023 International Conference on Applied Mathematics & Computer Science (ICAMCS), 129-135. https://doi.org/10.1109/ICAMCS59110.2023.00028

Velasco, C. (2022). Cybercrime and artificial intelligence: An overview of the work of international organizations on criminal justice and the internationally applicable instruments. ERA Forum, 23, 109–126. https://doi.org/10.1007/s12027-022-00702-z

Yan, Q. (2023). Legal challenges of artificial intelligence in the field of criminal defense. Lecture Notes in Education Psychology and Public Media, 30, 167-175. https://doi.org/10.54254/2753-7048/30/20231629

Ye, X., Yan, Y., Li, J., & Jiang, B. (2024). Privacy and personal data risk governance for generative artificial intelligence: A Chinese perspective. Telecommunications Policy, 48(10), 102851. https://doi.org/10.1016/j.telpol.2024.102851

Zafar, A. (2024). Balancing the scale: Navigating ethical and practical challenges of artificial intelligence (AI) integration in legal practices. Discover Artificial Intelligence, 4(27). https://doi.org/10.1007/s44163-024-00121-8

Published

2024-12-30

How to Cite

AllahRakha, N. (2024). Legal Frameworks for AI-Driven Cybercrime Prevention. Uzbek Journal of Law and Digital Policy, 2(6), 1–24. https://doi.org/10.59022/ujldp.253

Issue

Section

Articles